OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure

نویسندگان

چکیده

Abstract. This paper provides a summary of the work done within Phase III Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) project, under International Energy Agency Wind Technology Collaboration Programme Task 30. phase focused on validating aerodynamic loading wind turbine rotor undergoing large motion caused by floating support structure. Numerical models Technical University Denmark 10 MW reference were validated using measurement data from 1:75 scale test performed during UNsteady Aerodynamics for FLOating (UNAFLOW) project follow-on experimental campaign, both at Politecnico di Milano tunnel. Validation was comparing loads steady (fixed platform) unsteady (harmonic conditions. For conditions, platform forced to oscillate in surge pitch directions several frequencies amplitudes. These oscillations result variation that impacts (e.g., thrust torque). conditions studied these tests, system response almost steady. Only small hysteresis airfoil performance angle attack variations attached flow observed. During experiments, speed blade held constant. However, real operating would and/or actuations, depending controller region is operating. Additional simulations control parameters conducted verify fidelity different models. Participant results showed, general, good agreement measurements need account dynamic inflow when there are changes due or actuations motion. not accounting effects predicted 9 % lower amplitude 18 higher actuations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Platform Surge Motion on the Performance of 5MW NREL Offshore Floating Wind Turbine

In this study, an unsteady aerodynamic simulation is performed to realize the influences of platform surge motion on the aerodynamic performance of a high capacity offshore floating wind turbine. A dynamic model with pitch angle control system is utilized to propose a more realistic model of wind turbine and also achieve the rated condition of the rotor. The transient effect of platform surge m...

متن کامل

Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor

This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI[1] responses of HAWT[2]. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. ...

متن کامل

Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor

This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by ...

متن کامل

Aerodynamic optimization of a 5 Megawatt wind turbine blade

Wind power has been widely considered in recent years as an available and a clean renewable energy source. The cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. Hence, megawatt wind turbines are being rapidly developed in recent years. In this paper, an aerodynamic analysis of the NREL 5MW turbine is...

متن کامل

Aerodynamic optimization of a 5 Megawatt wind turbine blade

Wind power has been widely considered in recent years as an available and a clean renewable energy source. The cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. Hence, megawatt wind turbines are being rapidly developed in recent years. In this paper, an aerodynamic analysis of the NREL 5MW turbine is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wind energy science

سال: 2023

ISSN: ['2366-7451', '2366-7443']

DOI: https://doi.org/10.5194/wes-8-465-2023